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Way back in Section 1.6 we described some of the more prevalent and damaging

classes of Internet attacks, including malware attacks, denial of service, sniffing,

source masquerading, and message modification and deletion. Although we have

since learned a tremendous amount about computer networks, we still haven’t

examined how to secure networks from those attacks. Equipped with our newly

acquired expertise in computer networking and Internet protocols, we’ll now study

in-depth secure communication and, in particular, how computer networks can be

defended from those nasty bad guys.

Let us introduce Alice and Bob, two people who want to communicate and

wish to do so “securely.” This being a networking text, we should remark that Alice

and Bob could be two routers that want to exchange routing tables securely, a client

and server that want to establish a secure transport connection, or two e-mail appli-

cations that want to exchange secure e-mail—all case studies that we will consider

later in this chapter. Alice and Bob are well-known fixtures in the security commu-

nity, perhaps because their names are more fun than a generic entity named “A”

that wants to communicate securely with a generic entity named “B.” Love affairs,

wartime communication, and business transactions are the commonly cited human

needs for secure communications; preferring the first to the latter two, we’re happy

to use Alice and Bob as our sender and receiver, and imagine them in this first 

scenario.



We said that Alice and Bob want to communicate and wish to do so “securely,”

but what precisely does this mean? As we will see, security (like love) is a many-

splendored thing; that is, there are many facets to security. Certainly, Alice and

Bob would like for the contents of their communication to remain secret from an

eavesdropper. They probably would also like to make sure that when they are

communicating, they are indeed communicating with each other, and that if their

communication is tampered with by an eavesdropper, that this tampering is

detected. In the first part of this chapter, we’ll cover the fundamental cryptography

techniques that allow for encrypting communication, authenticating the party with

whom one is communicating, and ensuring message integrity.

In the second part of this chapter, we’ll examine how the fundamental crypto-

graphy principles can be used to create secure networking protocols. Once again

taking a top-down approach, we’ll examine secure protocols in each of the (top

four) layers, beginning with the application layer. We’ll examine how to secure e-

mail, how to secure a TCP connection, how to provide blanket security at the net-

work layer, and how to secure a wireless LAN. In the third part of this chapter we’ll

consider operational security, which is about protecting organizational networks

from attacks. In particular, we’ll take a careful look at how firewalls and intrusion

detection systems can enhance the security of an organizational network.

8.1 What Is Network Security?

Let’s begin our study of network security by returning to our lovers, Alice and Bob,

who want to communicate “securely.” What precisely does this mean? Certainly,

Alice wants only Bob to be able to understand a message that she has sent, even

though they are communicating over an insecure medium where an intruder

(Trudy, the intruder) may intercept whatever is transmitted from Alice to Bob. Bob

also wants to be sure that the message he receives from Alice was indeed sent by

Alice, and Alice wants to make sure that the person with whom she is communicat-

ing is indeed Bob. Alice and Bob also want to make sure that the contents of their

messages have not been altered in transit. They also want to be assured that they

can communicate in the first place (i.e., that no one denies them access to the

resources needed to communicate). Given these considerations, we can identify the

following desirable properties of secure communication.

• Confidentiality. Only the sender and intended receiver should be able to under-

stand the contents of the transmitted message. Because eavesdroppers may inter-

cept the message, this necessarily requires that the message be somehow

encrypted so that an intercepted message cannot be understood by an intercep-

tor. This aspect of confidentiality is probably the most commonly perceived
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meaning of the term secure communication. We’ll study cryptographic tech-

niques for encrypting and decrypting data in Section 8.2.

• Message integrity. Alice and Bob want to ensure that the content of their com-

munication is not altered, either maliciously or by accident, in transit. Extensions

to the checksumming techniques that we encountered in reliable transport and

data link protocols can be used to provide such message integrity. We will study

message integrity in Section 8.3.

• End-point authentication. Both the sender and receiver should be able to 

confirm the identity of the other party involved in the communication—

to confirm that the other party is indeed who or what they claim to be. 

Face-to-face human communication solves this problem easily by visual

recognition. When communicating entities exchange messages over a

medium where they cannot see the other party, authentication is not so

simple. When a user wants to access an inbox, how does the mail server ver-

ify that the user is the person he or she claims to be? We study end-point

authentication in Section 8.4.

• Operational security. Almost all organizations (companies, universities, and

so on) today have networks that are attached to the public Internet. These net-

works therefore can potentially be compromised. Attackers can attempt 

to deposit worms into the hosts in the network, obtain corporate secrets, map

the internal network configurations, and launch DoS attacks. We’ll see in 

Section 8.9 that operational devices such as firewalls and intrusion detection

systems are used to counter attacks against an organization’s network. A

firewall sits between the organization’s network and the public network, 

controlling packet access to and from the network. An intrusion detection sys-

tem performs “deep packet inspection,” alerting the network administrators

about suspicious activity.

Having established what we mean by network security, let’s next consider

exactly what information an intruder may have access to, and what actions can be

taken by the intruder. Figure 8.1 illustrates the scenario. Alice, the sender, wants to

send data to Bob, the receiver. In order to exchange data securely, while meeting the

requirements of confidentiality, end-point authentication, and message integrity,

Alice and Bob will exchange control messages and data messages (in much the

same way that TCP senders and receivers exchange control segments and data seg-

ments). All or some of these messages will typically be encrypted. As discussed in

Section 1.6, an intruder can potentially perform

• eavesdropping—sniffing and recording control and data messages on the

channel.

• modification, insertion, or deletion of messages or message content.
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As we’ll see, unless appropriate countermeasures are taken, these capabilities

allow an intruder to mount a wide variety of security attacks: snooping on commu-

nication (possibly stealing passwords and data), impersonating another entitity,

hijacking an ongoing session, denying service to legitimate network users by over-

loading system resources, and so on. A summary of reported attacks is maintained at

the CERT Coordination Center [CERT 2012].

Having established that there are indeed real threats loose in the Internet,

what are the Internet equivalents of Alice and Bob, our friends who need to com-

municate securely? Certainly, Bob and Alice might be human users at two end

systems, for example, a real Alice and a real Bob who really do want to exchange

secure e-mail. They might also be participants in an electronic commerce transac-

tion. For example, a real Bob might want to transfer his credit card number

securely to a Web server to purchase an item online. Similarly, a real Alice might

want to interact with her bank online. The parties needing secure communication

might themselves also be part of the network infrastructure. Recall that the

domain name system (DNS, see Section 2.5) or routing daemons that exchange

routing information (see Section 4.6) require secure communication between two

parties. The same is true for network management applications, a topic we exam-

ine in Chapter 9. An intruder that could actively interfere with DNS lookups (as

discussed in Section 2.5), routing computations [RFC 4272], or network manage-

ment functions [RFC 3414] could wreak havoc in the Internet.

Having now established the framework, a few of the most important defi-

nitions, and the need for network security, let us next delve into cryptography.

While the use of cryptography in providing confidentiality is self-evident, we’ll see

shortly that it is also central to providing end-point authentication and message

integrity—making cryptography a cornerstone of network security.
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8.2 Principles of Cryptography

Although cryptography has a long history dating back at least as far as Julius Caesar,

modern cryptographic techniques, including many of those used in the Internet,

are based on advances made in the past 30 years. Kahn’s book, The Codebreakers

[Kahn 1967], and Singh’s book, The Code Book: The Science of Secrecy from

Ancient Egypt to Quantum Cryptography [Singh 1999], provide a fascinating look

at the long history of cryptography. A complete discussion of cryptography itself

requires a complete book [Kaufman 1995; Schneier 1995] and so we only touch

on the essential aspects of cryptography, particularly as they are practiced on the

Internet. We also note that while our focus in this section will be on the use of

cryptography for confidentiality, we’ll see shortly that cryptographic techniques

are inextricably woven into authentication, message integrity, nonrepudiation,

and more.

Cryptographic techniques allow a sender to disguise data so that an intruder can

gain no information from the intercepted data. The receiver, of course, must be able

to recover the original data from the disguised data. Figure 8.2 illustrates some of

the important terminology.

Suppose now that Alice wants to send a message to Bob. Alice’s message in

its original form (for example, “Bob, I love you. Alice”) is known as

plaintext, or cleartext. Alice encrypts her plaintext message using an encryption

algorithm so that the encrypted message, known as ciphertext, looks unintelligible

to any intruder. Interestingly, in many modern cryptographic systems, including

those used in the Internet, the encryption technique itself is known—published, stan-

dardized, and available to everyone (for example, [RFC 1321; RFC 3447; RFC
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2420; NIST 2001]), even a potential intruder! Clearly, if everyone knows the

method for encoding data, then there must be some secret information that prevents

an intruder from decrypting the transmitted data. This is where keys come in.

In Figure 8.2, Alice provides a key, K
A
, a string of numbers or characters, as

input to the encryption algorithm. The encryption algorithm takes the key and the

plaintext message, m, as input and produces ciphertext as output. The notation

K
A
(m) refers to the ciphertext form (encrypted using the key K

A
) of the plaintext

message, m. The actual encryption algorithm that uses key K
A

will be evident from

the context. Similarly, Bob will provide a key, K
B
, to the decryption algorithm

that takes the ciphertext and Bob’s key as input and produces the original plain-

text as output. That is, if Bob receives an encrypted message K
A
(m), he decrypts it

by computing K
B
(K

A
(m)) = m. In symmetric key systems, Alice’s and Bob’s keys

are identical and are secret. In public key systems, a pair of keys is used. One of

the keys is known to both Bob and Alice (indeed, it is known to the whole world).

The other key is known only by either Bob or Alice (but not both). In the follow-

ing two subsections, we consider symmetric key and public key systems in more

detail.

8.2.1 Symmetric Key Cryptography

All cryptographic algorithms involve substituting one thing for another, for exam-

ple, taking a piece of plaintext and then computing and substituting the appropriate

ciphertext to create the encrypted message. Before studying a modern key-based

cryptographic system, let us first get our feet wet by studying a very old, very sim-

ple symmetric key algorithm attributed to Julius Caesar, known as the Caesar

cipher (a cipher is a method for encrypting data).

For English text, the Caesar cipher would work by taking each letter in the

plaintext message and substituting the letter that is k letters later (allowing wrap-

around; that is, having the letter z followed by the letter a) in the alphabet. For

example if k = 3, then the letter a in plaintext becomes d in ciphertext; b in plaintext

becomes e in ciphertext, and so on. Here, the value of k serves as the key. As an

example, the plaintext message “bob, i love you. alice” becomes “ere,

l oryh brx. dolfh” in ciphertext. While the ciphertext does indeed look like

gibberish, it wouldn’t take long to break the code if you knew that the Caesar cipher

was being used, as there are only 25 possible key values.

An improvement on the Caesar cipher is the monoalphabetic cipher, which

also substitutes one letter of the alphabet with another letter of the alphabet. How-

ever, rather than substituting according to a regular pattern (for example, substitu-

tion with an offset of k for all letters), any letter can be substituted for any other

letter, as long as each letter has a unique substitute letter, and vice versa. The substi-

tution rule in Figure 8.3 shows one possible rule for encoding plaintext.

The plaintext message “bob, i love you. alice” becomes “nkn, s

gktc wky. mgsbc.” Thus, as in the case of the Caesar cipher, this looks like
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gibberish. A monoalphabetic cipher would also appear to be better than the Caesar

cipher in that there are 26! (on the order of 1026) possible pairings of letters

rather than 25 possible pairings. A brute-force approach of trying all 1026 possible

pairings would require far too much work to be a feasible way of breaking the

encryption algorithm and decoding the message. However, by statistical analysis

of the plaintext language, for example, knowing that the letters e and t are the most

frequently occurring letters in typical English text (accounting for 13 percent and 9

percent of letter occurrences), and knowing that particular two- and three-letter

occurrences of letters appear quite often together (for example, “in,” “it,” “the,”

“ion,” “ing,” and so forth) make it relatively easy to break this code. If the intruder

has some knowledge about the possible contents of the message, then it is even eas-

ier to break the code. For example, if Trudy the intruder is Bob’s wife and suspects

Bob of having an affair with Alice, then she might suspect that the names “bob”

and “alice” appear in the text. If Trudy knew for certain that those two names

appeared in the ciphertext and had a copy of the example ciphertext message

above, then she could immediately determine seven of the 26 letter pairings,

requiring 109 fewer possibilities to be checked by a brute-force method. Indeed, if

Trudy suspected Bob of having an affair, she might well expect to find some other

choice words in the message as well.

When considering how easy it might be for Trudy to break Bob and Alice’s

encryption scheme, one can distinguish three different scenarios, depending on what

information the intruder has.

• Ciphertext-only attack. In some cases, the intruder may have access only to the

intercepted ciphertext, with no certain information about the contents of the

plaintext message. We have seen how statistical analysis can help in a cipher-

text-only attack on an encryption scheme.

• Known-plaintext attack. We saw above that if Trudy somehow knew for sure that

“bob” and “alice” appeared in the ciphertext message, then she could have deter-

mined the (plaintext, ciphertext) pairings for the letters a, l, i, c, e, b, and o.

Trudy might also have been fortunate enough to have recorded all of the cipher-

text transmissions and then found Bob’s own decrypted version of one of the

transmissions scribbled on a piece of paper. When an intruder knows some of the

(plaintext, ciphertext) pairings, we refer to this as a known-plaintext attack on

the encryption scheme.
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Plaintext letter: a b c d e f g h i j k l m n o p q r s t u v w x y z

Ciphertext letter: m n b v c x z a s d f g h j k l p o i u y t r e w q

Figure 8.3 � A monoalphabetic cipher



• Chosen-plaintext attack. In a chosen-plaintext attack, the intruder is able to

choose the plaintext message and obtain its corresponding ciphertext form. For

the simple encryption algorithms we’ve seen so far, if Trudy could get Alice to

send the message, “The quick brown fox jumps over the lazy

dog,” she could completely break the encryption scheme. We’ll see shortly that

for more sophisticated encryption techniques, a chosen-plaintext attack does not

necessarily mean that the encryption technique can be broken.

Five hundred years ago, techniques improving on monoalphabetic encryption,

known as polyalphabetic encryption, were invented. The idea behind polyalpha-

betic encryption is to use multiple monoalphabetic ciphers, with a specific monoal-

phabetic cipher to encode a letter in a specific position in the plaintext message.

Thus, the same letter, appearing in different positions in the plaintext message,

might be encoded differently. An example of a polyalphabetic encryption scheme is

shown in Figure 8.4. It has two Caesar ciphers (with k = 5 and k = 19), shown as

rows. We might choose to use these two Caesar ciphers, C1 and C2, in the repeating

pattern C1, C2, C2, C1, C2. That is, the first letter of plaintext is to be encoded using

C1, the second and third using C2, the fourth using C1, and the fifth using C2. The

pattern then repeats, with the sixth letter being encoded using C1, the seventh with

C2, and so on. The plaintext message “bob, i love you.” is thus encrypted

“ghu, n etox dhz.” Note that the first b in the plaintext message is encrypted

using C1, while the second b is encrypted using C2. In this example, the encryption

and decryption “key” is the knowledge of the two Caesar keys (k = 5, k = 19) and

the pattern C1, C2, C2, C1, C2.

Block Ciphers

Let us now move forward to modern times and examine how symmetric key encryp-

tion is done today. There are two broad classes of symmetric encryption techniques:

stream ciphers and block ciphers. We’ll briefly examine stream ciphers in Section

8.7 when we investigate security for wireless LANs. In this section, we focus on

block ciphers, which are used in many secure Internet protocols, including PGP

(for secure e-mail), SSL (for securing TCP connections), and IPsec (for securing the

network-layer transport).
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In a block cipher, the message to be encrypted is processed in blocks of k bits.

For example, if k = 64, then the message is broken into 64-bit blocks, and each block

is encrypted independently. To encode a block, the cipher uses a one-to-one map-

ping to map the k-bit block of cleartext to a k-bit block of ciphertext. Let’s look at

an example. Suppose that k = 3, so that the block cipher maps 3-bit inputs (clear-

text) to 3-bit outputs (ciphertext). One possible mapping is given in Table 8.1.

Notice that this is a one-to-one mapping; that is, there is a different output for each

input. This block cipher breaks the message up into 3-bit blocks and encrypts each

block according to the above mapping. You should verify that the message

010110001111 gets encrypted into 101000111001.

Continuing with this 3-bit block example, note that the mapping in Table 8.1 is

just one mapping of many possible mappings. How many possible mappings are there?

To answer this question, observe that a mapping is nothing more than a permuta-

tion of all the possible inputs. There are 23 (= 8) possible inputs (listed under the

input columns). These eight inputs can be permuted in 8! = 40,320 different ways.

Since each of these permutations specifies a mapping, there are 40,320 possible

mappings. We can view each of these mappings as a key—if Alice and Bob both

know the mapping (the key), they can encrypt and decrypt the messages sent

between them.

The brute-force attack for this cipher is to try to decrypt ciphtertext by using all

mappings. With only 40,320 mappings (when k = 3), this can quickly be accom-

plished on a desktop PC. To thwart brute-force attacks, block ciphers typically use

much larger blocks, consisting of k = 64 bits or even larger. Note that the number of

possible mappings for a general k-block cipher is 2k!, which is astronomical for even

moderate values of k (such as k = 64).

Although full-table block ciphers, as just described, with moderate values of

k can produce robust symmetric key encryption schemes, they are unfortunately

difficult to implement. For k = 64 and for a given mapping, Alice and Bob

would need to maintain a table with 264 input values, which is an infeasible task.

Moreover, if Alice and Bob were to change keys, they would have to each regenerate

Table 8.1 � A specific 3-bit block cipher

input output input output

000 110 100 011

001 111 101 010

010 101 110 000

011 100 111 001



the table. Thus, a full-table block cipher, providing predetermined mappings

between all inputs and outputs (as in the example above), is simply out of the

question.

Instead, block ciphers typically use functions that simulate randomly permuted

tables. An example (adapted from [Kaufman 1995]) of such a function for k = 64

bits is shown in Figure 8.5. The function first breaks a 64-bit block into 8 chunks,

with each chunk consisting of 8 bits. Each 8-bit chunk is processed by an 8-bit to 8-

bit table, which is of manageable size. For example, the first chunk is processed by

the table denoted by T1. Next, the 8 output chunks are reassembled into a 64-bit

block. The positions of the 64 bits in the block are then scrambled (permuted) to

produce a 64-bit output. This output is fed back to the 64-bit input, where another

cycle begins. After n such cycles, the function provides a 64-bit block of ciphertext.

The purpose of the rounds is to make each input bit affect most (if not all) of the

final output bits. (If only one round were used, a given input bit would affect only 8

of the 64 output bits.) The key for this block cipher algorithm would be the eight

permutation tables (assuming the scramble function is publicly known).

Today there are a number of popular block ciphers, including DES (standing for

Data Encryption Standard), 3DES, and AES (standing for Advanced Encryption

Standard). Each of these standards uses functions, rather than predetermined tables,

along the lines of Figure 8.5 (albeit more complicated and specific to each cipher).

Each of these algorithms also uses a string of bits for a key. For example, DES uses

64-bit blocks with a 56-bit key. AES uses 128-bit blocks and can operate with keys

that are 128, 192, and 256 bits long. An algorithm’s key determines the specific
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“mini-table” mappings and permutations within the algorithm’s internals. The brute-

force attack for each of these ciphers is to cycle through all the keys, applying

the decryption algorithm with each key. Observe that with a key length of n, there

are 2n possible keys. NIST [NIST 2001] estimates that a machine that could crack

56-bit DES in one second (that is, try all 256 keys in one second) would take approx-

imately 149 trillion years to crack a 128-bit AES key.

Cipher-Block Chaining

In computer networking applications, we typically need to encrypt long messages

(or long streams of data). If we apply a block cipher as described by simply chop-

ping up the message into k-bit blocks and independently encrypting each block, a

subtle but important problem occurs. To see this, observe that two or more of the clear-

text blocks can be identical. For example, the cleartext in two or more blocks could

be “HTTP/1.1”. For these identical blocks, a block cipher would, of course, produce

the same ciphertext. An attacker could potentially guess the cleartext when it sees

identical ciphertext blocks and may even be able to decrypt the entire message by

identifying identical ciphtertext blocks and using knowledge about the underlying

protocol structure [Kaufman 1995].

To address this problem, we can mix some randomness into the ciphertext so

that identical plaintext blocks produce different ciphertext blocks. To explain this

idea, let m(i) denote the ith plaintext block, c(i) denote the ith ciphertext block,

and a � b denote the exclusive-or (XOR) of two bit strings, a and b. (Recall that

the 0 � 0 = 1 � 1 = 0 and 0 � 1 = 1 � 0 = 1, and the XOR of two bit strings is done

on a bit-by-bit basis. So, for example, 10101010 � 11110000 = 01011010.) Also,

denote the block-cipher encryption algorithm with key S as K
S
. The basic idea is

as follows. The sender creates a random k-bit number r(i) for the ith block and cal-

culates c(i) = K
S
(m(i)� r(i)). Note that a new k-bit random number is chosen for

each block. The sender then sends c(1), r(1), c(2), r(2), c(3), r(3), and so on. Since

the receiver receives c(i) and r(i), it can recover each block of the plaintext by

computing m(i) = K
S
(c(i)) � r(i). It is important to note that, although r(i) is sent

in the clear and thus can be sniffed by Trudy, she cannot obtain the plaintext m(i),

since she does not know the key K
S
. Also note that if two plaintext blocks m(i) and

m( j) are the same, the corresponding ciphertext blocks c(i) and c( j) will be differ-

ent (as long as the random numbers r(i) and r( j) are different, which occurs with

very high probability).

As an example, consider the 3-bit block cipher in Table 8.1. Suppose the plain-

text is 010010010. If Alice encrypts this directly, without including the randomness,

the resulting ciphertext becomes 101101101. If Trudy sniffs this ciphertext, because

each of the three cipher blocks is the same, she can correctly surmise that each of

the three plaintext blocks are the same. Now suppose instead Alice generates the

random blocks r(1) = 001, r(2) =111, and r(3) = 100 and uses the above technique

to generate the ciphertext c(1) = 100, c(2) = 010, and c(3) = 000. Note that the three



ciphertext blocks are different even though the plaintext blocks are the same. Alice

then sends c(1), r(1), c(2), and r(2). You should verify that Bob can obtain the origi-

nal plaintext using the shared key K
S
.

The astute reader will note that introducing randomness solves one problem but

creates another: namely, Alice must transmit twice as many bits as before. Indeed,

for each cipher bit, she must now also send a random bit, doubling the required

bandwidth. In order to have our cake and eat it too, block ciphers typically use a

technique called Cipher Block Chaining (CBC). The basic idea is to send only one

random value along with the very first message, and then have the sender and

receiver use the computed coded blocks in place of the subsequent random number.

Specifically, CBC operates as follows:

1. Before encrypting the message (or the stream of data), the sender generates a

random k-bit string, called the Initialization Vector (IV). Denote this initial-

ization vector by c(0). The sender sends the IV to the receiver in cleartext.

2. For the first block, the sender calculates m(1) � c(0), that is, calculates the

exclusive-or of the first block of cleartext with the IV. It then runs the result

through the block-cipher algorithm to get the corresponding ciphertext block;

that is, c(1) = K
S
(m(1) � c(0)). The sender sends the encrypted block c(1) to

the receiver.

3. For the ith block, the sender generates the ith ciphertext block from c(i) =

K
S
(m(i) � c(i � 1)).

Let’s now examine some of the consequences of this approach. First, the

receiver will still be able to recover the original message. Indeed, when the receiver

receives c(i), it decrypts it with K
S

to obtain s(i) = m(i) � c(i – 1); since the receiver

also knows c(i – 1), it then obtains the cleartext block from m(i) = s(i) � c(i – 1). Sec-

ond, even if two cleartext blocks are identical, the corresponding ciphtertexts

(almost always) will be different. Third, although the sender sends the IV in the

clear, an intruder will still not be able to decrypt the ciphertext blocks, since the

intruder does not know the secret key, S. Finally, the sender only sends one over-

head block (the IV), thereby negligibly increasing the bandwidth usage for long

messages (consisting of hundreds of blocks).

As an example, let’s now determine the ciphertext for the 3-bit block cipher in

Table 8.1 with plaintext 010010010 and IV = c(0) = 001. The sender first uses the

IV to calculate c(1) = K
S
(m(1) � c(0)) = 100. The sender then calculates c(2) =

K
S
(m(2) � c(1)) = K

S
(010 � 100) = 000, and c(3) = K

S
(m(3) � c(2)) = K

S
(010 �

000) = 101. The reader should verify that the receiver, knowing the IV and K
S

can

recover the original plaintext.

CBC has an important consequence when designing secure network protocols:

we’ll need to provide a mechanism within the protocol to distribute the IV from

sender to receiver. We’ll see how this is done for several protocols later in this

chapter.
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8.2.2 Public Key Encryption

For more than 2,000 years (since the time of the Caesar cipher and up to the

1970s), encrypted communication required that the two communicating parties

share a common secret—the symmetric key used for encryption and decryption.

One difficulty with this approach is that the two parties must somehow agree on

the shared key; but to do so requires (presumably secure) communication! Perhaps

the parties could first meet and agree on the key in person (for example, two of

Caesar’s centurions might meet at the Roman baths) and thereafter communicate

with encryption. In a networked world, however, communicating parties may never

meet and may never converse except over the network. Is it possible for two par-

ties to communicate with encryption without having a shared secret key that is

known in advance? In 1976, Diffie and Hellman [Diffie 1976] demonstrated an

algorithm (known now as Diffie-Hellman Key Exchange) to do just that—a radi-

cally different and marvelously elegant approach toward secure communication

that has led to the development of today’s public key cryptography systems. We’ll

see shortly that public key cryptography systems also have several wonderful

properties that make them useful not only for encryption, but for authentication

and digital signatures as well. Interestingly, it has recently come to light that

ideas similar to those in [Diffie 1976] and [RSA 1978] had been independently

developed in the early 1970s in a series of secret reports by researchers at the

Communications-Electronics Security Group in the United Kingdom [Ellis

1987]. As is often the case, great ideas can spring up independently in many

places; fortunately, public key advances took place not only in private, but also

in the public view, as well.

The use of public key cryptography is conceptually quite simple. Suppose Alice

wants to communicate with Bob. As shown in Figure 8.6, rather than Bob and Alice
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sharing a single secret key (as in the case of symmetric key systems), Bob (the recip-

ient of Alice’s messages) instead has two keys—a public key that is available to

everyone in the world (including Trudy the intruder) and a private key that is known

only to Bob. We will use the notation K
B
+ and K

B
– to refer to Bob’s public and private

keys, respectively. In order to communicate with Bob, Alice first fetches Bob’s pub-

lic key. Alice then encrypts her message, m, to Bob using Bob’s public key and a

known (for example, standardized) encryption algorithm; that is, Alice computes

K
B
+(m). Bob receives Alice’s encrypted message and uses his private key and a known

(for example, standardized) decryption algorithm to decrypt Alice’s encrypted mes-

sage. That is, Bob computes K
B
–(K

B
+(m)). We will see below that there are encryp-

tion/decryption algorithms and techniques for choosing public and private keys such

that K
B
–(K

B
+(m)) = m; that is, applying Bob’s public key, K

B
+, to a message, m (to get

K
B
+(m)), and then applying Bob’s private key, K

B
–, to the encrypted version of m (that

is, computing K
B
–(K

B
+(m))) gives back m. This is a remarkable result! In this manner,

Alice can use Bob’s publicly available key to send a secret message to Bob without

either of them having to distribute any secret keys! We will see shortly that we can

interchange the public key and private key encryption and get the same remarkable

result––that is, K
B
– (

B
+(m)) = K

B
+ (K

B
–(m)) = m.

The use of public key cryptography is thus conceptually simple. But two imme-

diate worries may spring to mind. A first concern is that although an intruder inter-

cepting Alice’s encrypted message will see only gibberish, the intruder knows both

the key (Bob’s public key, which is available for all the world to see) and the algo-

rithm that Alice used for encryption. Trudy can thus mount a chosen-plaintext

attack, using the known standardized encryption algorithm and Bob’s publicly avail-

able encryption key to encode any message she chooses! Trudy might well try, for

example, to encode messages, or parts of messages, that she suspects that Alice

might send. Clearly, if public key cryptography is to work, key selection and encryp-

tion/decryption must be done in such a way that it is impossible (or at least so hard

as to be nearly impossible) for an intruder to either determine Bob’s private key or

somehow otherwise decrypt or guess Alice’s message to Bob. A second concern is

that since Bob’s encryption key is public, anyone can send an encrypted message to

Bob, including Alice or someone claiming to be Alice. In the case of a single shared

secret key, the fact that the sender knows the secret key implicitly identifies the

sender to the receiver. In the case of public key cryptography, however, this is no

longer the case since anyone can send an encrypted message to Bob using Bob’s

publicly available key. A digital signature, a topic we will study in Section 8.3, is

needed to bind a sender to a message.

RSA

While there may be many algorithms that address these concerns, the RSA algo-

rithm (named after its founders, Ron Rivest, Adi Shamir, and Leonard Adleman)

has become almost synonymous with public key cryptography. Let’s first see how

RSA works and then examine why it works.
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RSA makes extensive use of arithmetic operations using modulo-n arithmetic.

So let’s briefly review modular arithmetic. Recall that x mod n simply means the

remainder of x when divided by n; so, for example, 19 mod 5 = 4. In modular arith-

metic, one performs the usual operations of addition, multiplication, and exponenti-

ation. However, the result of each operation is replaced by the integer remainder that

is left when the result is divided by n. Adding and multiplying with modular arith-

metic is facilitated with the following handy facts:

[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n) – (b mod n)] mod n = (a – b) mod n

[(a mod n) • (b mod n)] mod n = (a • b) mod n

It follows from the third fact that (a mod n)d mod n = ad mod n, which is an identity

that we will soon find very useful.

Now suppose that Alice wants to send to Bob an RSA-encrypted message, as

shown in Figure 8.6. In our discussion of RSA, let’s always keep in mind that a mes-

sage is nothing but a bit pattern, and every bit pattern can be uniquely represented

by an integer number (along with the length of the bit pattern). For example, suppose

a message is the bit pattern 1001; this message can be represented by the decimal

integer 9. Thus, when encrypting a message with RSA, it is equivalent to encrypting

the unique integer number that represents the message.

There are two interrelated components of RSA:

• The choice of the public key and the private key

• The encryption and decryption algorithm

To generate the public and private RSA keys, Bob performs the following steps:

1. Choose two large prime numbers, p and q. How large should p and q be? The

larger the values, the more difficult it is to break RSA, but the longer it takes to

perform the encoding and decoding. RSA Laboratories recommends that the

product of p and q be on the order of 1,024 bits. For a discussion of how to

find large prime numbers, see [Caldwell 2012].

2. Compute n = pq and z = (p – 1)(q – 1).

3. Choose a number, e, less than n, that has no common factors (other than 1)

with z. (In this case, e and z are said to be relatively prime.) The letter e is used

since this value will be used in encryption.

4. Find a number, d, such that ed – 1 is exactly divisible (that is, with no remain-

der) by z. The letter d is used because this value will be used in decryption. Put

another way, given e, we choose d such that

ed mod z = 1

5. The public key that Bob makes available to the world, K
B
+, is the pair of num-

bers (n, e); his private key, K
B
–, is the pair of numbers (n, d).
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The encryption by Alice and the decryption by Bob are done as follows:

• Suppose Alice wants to send Bob a bit pattern represented by the integer number m

(with m < n). To encode, Alice performs the exponentiation me, and then computes

the integer remainder when me is divided by n. In other words, the encrypted

value, c, of Alice’s plaintext message, m, is

c = me mod n

The bit pattern corresponding to this ciphertext c is sent to Bob.

• To decrypt the received ciphertext message, c, Bob computes

m = cd mod n

which requires the use of his private key (n,d).

As a simple example of RSA, suppose Bob chooses p = 5 and q = 7. (Admit-

tedly, these values are far too small to be secure.) Then n = 35 and z = 24. Bob

chooses e = 5, since 5 and 24 have no common factors. Finally, Bob chooses d = 29,

since 5 � 29 – 1 (that is, ed – 1) is exactly divisible by 24. Bob makes the two val-

ues, n = 35 and e = 5, public and keeps the value d = 29 secret. Observing these two

public values, suppose Alice now wants to send the letters l, o, v, and e to Bob. Inter-

preting each letter as a number between 1 and 26 (with a being 1, and z being 26),

Alice and Bob perform the encryption and decryption shown in Tables 8.2 and 8.3,

respectively. Note that in this example, we consider each of the four letters as a dis-

tinct message. A more realistic example would be to convert the four letters into

their 8-bit ASCII representations and then encrypt the integer corresponding to the

resulting 32-bit bit pattern. (Such a realistic example generates numbers that are

much too long to print in a textbook!)

Given that the “toy” example in Tables 8.2 and 8.3 has already produced some

extremely large numbers, and given that we saw earlier that p and q should each be

several hundred bits long, several practical issues regarding RSA come to mind.
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Table 8.2 � Alice’s RSA encryption, e = 5, n = 35

Plaintext Letter m: numeric representation m e Ciphertext c = m e mod n

l 12 248832 17

o 15 759375 15

v 22 5153632 22

e 5 3125 10



How does one choose large prime numbers? How does one then choose e and d?

How does one perform exponentiation with large numbers? A discussion of these

important issues is beyond the scope of this book; see [Kaufman 1995] and the ref-

erences therein for details.

Session Keys

We note here that the exponentiation required by RSA is a rather time-consuming

process. By contrast, DES is at least 100 times faster in software and between 1,000

and 10,000 times faster in hardware [RSA Fast 2012]. As a result, RSA is often used

in practice in combination with symmetric key cryptography. For example, if Alice

wants to send Bob a large amount of encrypted data, she could do the following.

First Alice chooses a key that will be used to encode the data itself; this key is

referred to as a session key, and is denoted by K
S
. Alice must inform Bob of the ses-

sion key, since this is the shared symmetric key they will use with a symmetric key

cipher (e.g., with DES or AES). Alice encrypts the session key using Bob’s public

key, that is, computes c = (K
S
)e mod n. Bob receives the RSA-encrypted session key,

c, and decrypts it to obtain the session key, K
S
. Bob now knows the session key that

Alice will use for her encrypted data transfer.

Why Does RSA Work?

RSA encryption/decryption appears rather magical. Why should it be that by apply-

ing the encryption algorithm and then the decryption algorithm, one recovers the

original message? In order to understand why RSA works, again denote n = pq,

where p and q are the large prime numbers used in the RSA algorithm.

Recall that, under RSA encryption, a message (uniquely represented by an inte-

ger), m, is exponentiated to the power e using modulo-n arithmetic, that is,

c = me mod n

Decryption is performed by raising this value to the power d, again using modulo-n

arithmetic. The result of an encryption step followed by a decryption step is thus
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Table 8.3 � Bob’s RSA decryption, d = 29, n = 35

Ciphertext c c d m = c d mod n Plaintext Letter

17 4819685721067509150915091411825223071697 12 l

15 127834039403948858939111232757568359375 15 o

22 851643319086537701956194499721106030592 22 v

10 1000000000000000000000000000000 5 e



(me mod n)d mod n . Let’s now see what we can say about this quantity. As mentioned

earlier, one important property of modulo arithmetic is (a mod n)d mod n = ad mod

n for any values a, n, and d. Thus, using a = me in this property, we have

(me mod n)d mod n = med mod n

It therefore remains to show that med mod n = m. Although we’re trying to remove

some of the magic about why RSA works, to establish this, we’ll need to use a rather

magical result from number theory here. Specifically, we’ll need the result that says if

p and q are prime, n = pq, and z = (p – 1)(q – 1), then xy mod n is the same as x(y mod z)

mod n [Kaufman 1995]. Applying this result with x = m and y = ed we have

med mod n = m(ed mod z) mod n

But remember that we have chosen e and d such that ed mod z = 1. This gives us

med mod n = m1 mod n = m

which is exactly the result we are looking for! By first exponentiating to the power

of e (that is, encrypting) and then exponentiating to the power of d (that is, decrypt-

ing), we obtain the original value, m. Even more wonderful is the fact that if we first

exponentiate to the power of d and then exponentiate to the power of e—that is, we

reverse the order of encryption and decryption, performing the decryption operation

first and then applying the encryption operation—we also obtain the original value,

m. This wonderful result follows immediately from the modular arithmetic:

(md mod n)e mod n = mde mod n = med mod n = (me mod n)d mod n
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The security of RSA relies on the fact that there are no known algorithms for

quickly factoring a number, in this case the public value n, into the primes p and q. If

one knew p and q, then given the public value e, one could easily compute the secret

key, d. On the other hand, it is not known whether or not there exist fast algorithms for

factoring a number, and in this sense, the security of RSA is not guaranteed.

Another popular public-key encryption algorithm is the Diffie-Hellman algo-

rithm, which we will briefly explore in the homework problems. Diffie-Hellman is

not as versatile as RSA in that it cannot be used to encrypt messages of arbitrary

length; it can be used, however, to establish a symmetric session key, which is in

turn used to encrypt messages.

8.3 Message Integrity and Digital Signatures

In the previous section we saw how encryption can be used to provide confidential-

ity to two communicating entities. In this section we turn to the equally important



cryptography topic of providing message integrity (also known as message authen-

tication). Along with message integrity, we will discuss two related topics in this

section: digital signatures and end-point authentication.

We define the message integrity problem using, once again, Alice and Bob.

Suppose Bob receives a message (which may be encrypted or may be in plaintext)

and he believes this message was sent by Alice. To authenticate this message, Bob

needs to verify:

1. The message indeed originated from Alice.

2. The message was not tampered with on its way to Bob.

We’ll see in Sections 8.4 through 8.7 that this problem of message integrity is a

critical concern in just about all secure networking protocols.

As a specific example, consider a computer network using a link-state routing

algorithm (such as OSPF) for determining routes between each pair of routers in

the network (see Chapter 4). In a link-state algorithm, each router needs to broad-

cast a link-state message to all other routers in the network. A router’s link-state

message includes a list of its directly connected neighbors and the direct costs to

these neighbors. Once a router receives link-state messages from all of the other

routers, it can create a complete map of the network, run its least-cost routing

algorithm, and configure its forwarding table. One relatively easy attack on the

routing algorithm is for Trudy to distribute bogus link-state messages with incor-

rect link-state information. Thus the need for message integrity—when router B

receives a link-state message from router A, router B should verify that router A

actually created the message and, further, that no one tampered with the message

in transit.

In this section, we describe a popular message integrity technique that is used

by many secure networking protocols. But before doing so, we need to cover

another important topic in cryptography—cryptographic hash functions.

8.3.1 Cryptographic Hash Functions

As shown in Figure 8.7, a hash function takes an input, m, and computes a fixed-

size string H(m) known as a hash. The Internet checksum (Chapter 3) and CRCs

(Chapter 4) meet this definition. A cryptographic hash function is required to have

the following additional property:

• It is computationally infeasible to find any two different messages x and y such

that H(x) = H(y).

Informally, this property means that it is computationally infeasible for an

intruder to substitute one message for another message that is protected by the hash

function. That is, if (m, H(m)) are the message and the hash of the message created
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by the sender, then an intruder cannot forge the contents of another message, y, that

has the same hash value as the original message.

Let’s convince ourselves that a simple checksum, such as the Internet check-

sum, would make a poor cryptographic hash function. Rather than performing 1s

complement arithmetic (as in the Internet checksum), let us compute a checksum

by treating each character as a byte and adding the bytes together using 4-byte

chunks at a time. Suppose Bob owes Alice $100.99 and sends an IOU to Alice

consisting of the text string “IOU100.99BOB.” The ASCII representation (in

hexadecimal notation) for these letters is 49, 4F, 55, 31, 30, 30, 2E, 39, 39,

42, 4F, 42.

Figure 8.8 (top) shows that the 4-byte checksum for this message is B2 C1

D2 AC. A slightly different message (and a much more costly one for Bob) is

shown in the bottom half of Figure 8.8. The messages “IOU100.99BOB” and

“IOU900.19BOB” have the same checksum. Thus, this simple checksum algo-

rithm violates the requirement above. Given the original data, it is simple to find

another set of data with the same checksum. Clearly, for security purposes, we are

going to need a more powerful hash function than a checksum.

The MD5 hash algorithm of Ron Rivest [RFC 1321] is in wide use today. It

computes a 128-bit hash in a four-step process consisting of a padding step

(adding a one followed by enough zeros so that the length of the message satisfies

certain conditions), an append step (appending a 64-bit representation of the mes-

sage length before padding), an initialization of an accumulator, and a final loop-

ing step in which the message’s 16-word blocks are processed (mangled) in four

rounds. For a description of MD5 (including a C source code implementation) see

[RFC 1321].
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The second major hash algorithm in use today is the Secure Hash Algorithm

(SHA-1) [FIPS 1995]. This algorithm is based on principles similar to those used in

the design of MD4 [RFC 1320], the predecessor to MD5. SHA-1, a US federal

standard, is required for use whenever a cryptographic hash algorithm is needed for

federal applications. It produces a 160-bit message digest. The longer output length

makes SHA-1 more secure.

8.3.2 Message Authentication Code

Let’s now return to the problem of message integrity. Now that we understand hash

functions, let’s take a first stab at how we might perform message integrity:

1. Alice creates message m and calculates the hash H(m) (for example with

SHA-1).

2. Alice then appends H(m) to the message m, creating an extended message

(m, H(m)), and sends the extended message to Bob.

3. Bob receives an extended message (m, h) and calculates H(m). If H(m) = h,

Bob concludes that everything is fine.

This approach is obviously flawed. Trudy can create a bogus message m´ in which

she says she is Alice, calculate H(m´), and send Bob (m´, H(m´)). When Bob receives

the message, everything checks out in step 3, so Bob doesn’t suspect any funny

business.

Figure 8.8 � Initial message and fraudulent message have the same 
checksum!

Message

I O U 1

0 0 . 9

9 B O B

ASCII

Representation

49 4F 55 31

30 30 2E 39

39 42 4F 42

B2 C1 D2 AC Checksum

Message

I O U 9

0 0 . 1

9 B O B

ASCII

Representation

49 4F 55 39

30 30 2E 31

39 42 4F 42

B2 C1 D2 AC Checksum
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To perform message integrity, in addition to using cryptographic hash func-

tions, Alice and Bob will need a shared secret s. This shared secret, which is nothing

more than a string of bits, is called the authentication key. Using this shared secret,

message integrity can be performed as follows:

1. Alice creates message m, concatenates s with m to create m + s, and calculates

the hash H(m + s) (for example with SHA-1). H(m + s) is called the message

authentication code (MAC).

2. Alice then appends the MAC to the message m, creating an extended message

(m, H(m + s)), and sends the extended message to Bob.

3. Bob receives an extended message (m, h) and knowing s, calculates the MAC

H(m + s). If H(m + s) = h, Bob concludes that everything is fine.

A summary of the procedure is shown in Figure 8.9. Readers should note that the

MAC here (standing for “message authentication code”) is not the same MAC used

in link-layer protocols (standing for “medium access control”)!

One nice feature of a MAC is that it does not require an encryption algorithm.

Indeed, in many applications, including the link-state routing algorithm described

earlier, communicating entities are only concerned with message integrity and are

not concerned with message confidentiality. Using a MAC, the entities can authenti-

cate the messages they send to each other without having to integrate complex

encryption algorithms into the integrity process.

As you might expect, a number of different standards for MACs have been pro-

posed over the years. The most popular standard today is HMAC, which can be
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used either with MD5 or SHA-1. HMAC actually runs data and the authentication

key through the hash function twice [Kaufman 1995; RFC 2104].

There still remains an important issue. How do we distribute the shared authen-

tication key to the communicating entities? For example, in the link-state routing

algorithm, we would somehow need to distribute the secret authentication key to

each of the routers in the autonomous system. (Note that the routers can all use

the same authentication key.) A network administrator could actually accomplish

this by physically visiting each of the routers. Or, if the network administrator is

a lazy guy, and if each router has its own public key, the network administrator

could distribute the authentication key to any one of the routers by encrypting it

with the router’s public key and then sending the encrypted key over the network

to the router.

8.3.3 Digital Signatures

Think of the number of the times you’ve signed your name to a piece of paper dur-

ing the last week. You sign checks, credit card receipts, legal documents, and letters.

Your signature attests to the fact that you (as opposed to someone else) have

acknowledged and/or agreed with the document’s contents. In a digital world, one

often wants to indicate the owner or creator of a document, or to signify one’s agree-

ment with a document’s content. A digital signature is a cryptographic technique

for achieving these goals in a digital world.

Just as with handwritten signatures, digital signing should be done in a way that

is verifiable and nonforgeable. That is, it must be possible to prove that a document

signed by an individual was indeed signed by that individual (the signature must be

verifiable) and that only that individual could have signed the document (the signa-

ture cannot be forged).

Let’s now consider how we might design a digital signature scheme. Observe

that when Bob signs a message, Bob must put something on the message that is

unique to him. Bob could consider attaching a MAC for the signature, where the

MAC is created by appending his key (unique to him) to the message, and then taking

the hash. But for Alice to verify the signature, she must also have a copy of the key,

in which case the key would not be unique to Bob. Thus, MACs are not going to get

the job done here.

Recall that with public-key cryptography, Bob has both a public and private

key, with both of these keys being unique to Bob. Thus, public-key cryptography is

an excellent candidate for providing digital signatures. Let us now examine how it

is done.

Suppose that Bob wants to digitally sign a document, m. We can think of the

document as a file or a message that Bob is going to sign and send. As shown in

Figure 8.10, to sign this document, Bob simply uses his private key, K
B
–, to com-

pute K
B
–(m). At first, it might seem odd that Bob is using his private key (which, as

we saw in Section 8.2, was used to decrypt a message that had been encrypted
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with his public key) to sign a document. But recall that encryption and decryption

are nothing more than mathematical operations (exponentiation to the power of e

or d in RSA; see Section 8.2) and recall that Bob’s goal is not to scramble or

obscure the contents of the document, but rather to sign the document in a man-

ner that is verifiable and nonforgeable. Bob’s digital signature of the document is

K
B
–(m).

Does the digital signature K
B
–(m) meet our requirements of being verifiable and

nonforgeable? Suppose Alice has m and K
B
–(m). She wants to prove in court (being

litigious) that Bob had indeed signed the document and was the only person who

could have possibly signed the document. Alice takes Bob’s public key, K
B
+, and

applies it to the digital signature, K
B
–(m), associated with the document, m. That is,

she computes K
B
+(K

B
–(m)), and voilà, with a dramatic flurry, she produces m, which

exactly matches the original document! Alice then argues that only Bob could have

signed the document, for the following reasons:

• Whoever signed the message must have used the private key, K
B
–, in computing

the signature K
B
–(m), such that K

B
+(K

B
–(m)) = m.

• The only person who could have known the private key, K
B
–, is Bob. Recall from

our discussion of RSA in Section 8.2 that knowing the public key, K
B
+, is of no

help in learning the private key, K
B
–. Therefore, the only person who could know

K
B
– is the person who generated the pair of keys, (K

B
+, K

B
–), in the first place, Bob.

(Note that this assumes, though, that Bob has not given K
B
– to anyone, nor has

anyone stolen K
B
– from Bob.)
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Figure 8.10 � Creating a digital signature for a document



It is also important to note that if the original document, m, is ever modified to

some alternate form, m´, the signature that Bob created for m will not be valid for m´,

since K
B
+(K

B
–(m)) does not equal m´. Thus we see that digital signatures also provide

message integrity, allowing the receiver to verify that the message was unaltered as

well as the source of the message.

One concern with signing data by encryption is that encryption and decryption

are computationally expensive. Given the overheads of encryption and decryption,

signing data via complete encryption/decryption can be overkill. A more efficient

approach is to introduce hash functions into the digital signature. Recall from Sec-

tion 8.3.2 that a hash algorithm takes a message, m, of arbitrary length and computes

a fixed-length “fingerprint” of the message, denoted by H(m). Using a hash func-

tion, Bob signs the hash of a message rather than the message itself, that is, Bob cal-

culates K
B
–(H(m)). Since H(m) is generally much smaller than the original message

m, the computational effort required to create the digital signature is substantially

reduced.

In the context of Bob sending a message to Alice, Figure 8.11 provides a sum-

mary of the operational procedure of creating a digital signature. Bob puts his origi-

nal long message through a hash function. He then digitally signs the resulting hash

Bob’s private
key, KB

–

Many-to-one
hash function

Long message

Dear Alice: 

This is a VERY long letter 

since there is so much to 

say..... 

..........

..........

Bob

Fixed-length
hash

Opgmdvboijrtnsd
gghPPdogm;lcvkb

Signed
hashPackage to send

to Alice

Fgkopdgoo69cmxw
54psdterma[asofmz

Encryption
algorithm

Figure 8.11 � Sending a digitally signed message
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with his private key. The original message (in cleartext) along with the digitally

signed message digest (henceforth referred to as the digital signature) is then sent to

Alice. Figure 8.12 provides a summary of the operational procedure of the signa-

ture. Alice applies the sender’s public key to the message to obtain a hash result.

Alice also applies the hash function to the cleartext message to obtain a second hash

result. If the two hashes match, then Alice can be sure about the integrity and author

of the message.

Before moving on, let’s briefly compare digital signatures with MACs, since

they have parallels, but also have important subtle differences. Both digital signatures

and MACs start with a message (or a document). To create a MAC out of the mes-

sage, we append an authentication key to the message, and then take the hash of the

result. Note that neither public key nor symmetric key encryption is involved in cre-

ating the MAC. To create a digital signature, we first take the hash of the message

and then encrypt the message with our private key (using public key cryptography).

696 CHAPTER 8 • SECURITY IN COMPUTER NETWORKS

Bob’s public
key, KB

+

Long message
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..........

..........
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Fixed-length
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Opgmdvboijrtnsd
gghPPdogm;lcvkb

Signed
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Fgkopdgoo69cmxw
54psdterma[asofmz

Many-to-one
hash function

Compare

Fixed-length
hash

Opgmdvboijrtnsd
gghPPdogm;lcvkb

Encryption
algorithm

Figure 8.12 � Verifying a signed message



Thus, a digital signature is a “heavier” technique, since it requires an underlying 

Public Key Infrastructure (PKI) with certification authorities as described below.

We’ll see in Section 8.4 that PGP—a popular secure e-mail system—uses digital 

signatures for message integrity. We’ve seen already that OSPF uses MACs for 

message integrity. We’ll see in Sections 8.5 and 8.6 that MACs are also used for pop-

ular transport-layer and network-layer security protocols.

Public Key Certification

An important application of digital signatures is public key certification, that is,

certifying that a public key belongs to a specific entity. Public key certification is

used in many popular secure networking protocols, including IPsec and SSL.

To gain insight into this problem, let’s consider an Internet-commerce version

of the classic “pizza prank.” Alice is in the pizza delivery business and accepts

orders over the Internet. Bob, a pizza lover, sends Alice a plaintext message that

includes his home address and the type of pizza he wants. In this message, Bob also

includes a digital signature (that is, a signed hash of the original plaintext message)

to prove to Alice that he is the true source of the message. To verify the signature,

Alice obtains Bob’s public key (perhaps from a public key server or from the e-mail

message) and checks the digital signature. In this manner she makes sure that Bob,

rather than some adolescent prankster, placed the order.

This all sounds fine until clever Trudy comes along. As shown in Figure 8.13,

Trudy is indulging in a prank. She sends a message to Alice in which she says she is

Bob, gives Bob’s home address, and orders a pizza. In this message she also

includes her (Trudy’s) public key, although Alice naturally assumes it is Bob’s pub-

lic key. Trudy also attaches a digital signature, which was created with her own

(Trudy’s) private key. After receiving the message, Alice applies Trudy’s public key

(thinking that it is Bob’s) to the digital signature and concludes that the plaintext

message was indeed created by Bob. Bob will be very surprised when the delivery

person brings a pizza with pepperoni and anchovies to his home!

We see from this example that for public key cryptography to be useful, you

need to be able to verify that you have the actual public key of the entity (person,

router, browser, and so on) with whom you want to communicate. For example, when

Alice wants to communicate with Bob using public key cryptography, she needs to

verify that the public key that is supposed to be Bob’s is indeed Bob’s.

Binding a public key to a particular entity is typically done by a Certification

Authority (CA), whose job is to validate identities and issue certificates. A CA has

the following roles:

1. A CA verifies that an entity (a person, a router, and so on) is who it says it is.

There are no mandated procedures for how certification is done. When dealing

with a CA, one must trust the CA to have performed a suitably rigorous identity

verification. For example, if Trudy were able to walk into the Fly-by-Night CA
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and simply announce “I am Alice” and receive certificates associated with the

identity of Alice, then one shouldn’t put much faith in public keys certified by

the Fly-by-Night CA. On the other hand, one might (or might not!) be more

willing to trust a CA that is part of a federal or state program. You can trust the

identity associated with a public key only to the extent to which you can trust a

CA and its identity verification techniques. What a tangled web of trust we spin!

2. Once the CA verifies the identity of the entity, the CA creates a certificate that

binds the public key of the entity to the identity. The certificate contains the

public key and globally unique identifying information about the owner of the

public key (for example, a human name or an IP address). The certificate is

digitally signed by the CA. These steps are shown in Figure 8.14.

Let us now see how certificates can be used to combat pizza-ordering

pranksters, like Trudy, and other undesirables. When Bob places his order he also

sends his CA-signed certificate. Alice uses the CA’s public key to check the validity

of Bob’s certificate and extract Bob’s public key.
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Trudy’s private
key, KT

–

Trudy’s public
key, KT

+

Signed (using
Trudy's private key)

message digest

Fgkopdgoo69cmxw
54psdterma[asofmz

Message

Alice,

Deliver a pizza to me.

                               Bob

Many-to-one
hash function

Alice uses Trudy’s
public key, thinking

it is Bob’s, and
concludes the

message is from Bob

PIZZA

Encryption
algorithm

Figure 8.13 � Trudy masquerades as Bob using public key cryptography



Both the International Telecommunication Union (ITU) and the IETF have

developed standards for CAs. ITU X.509 [ITU 2005a] specifies an authentication

service as well as a specific syntax for certificates. [RFC 1422] describes CA-based

key management for use with secure Internet e-mail. It is compatible with X.509 but

goes beyond X.509 by establishing procedures and conventions for a key manage-

ment architecture. Table 8.4 describes some of the important fields in a certificate.

Bob’s CA-signed
certificate containing

his public key, KB
+

Certification
Authority (CA)

(KB
+
, B)

CA’s private
key, KCA

–

Encryption
algorithm

Figure 8.14 � Bob has his public key certified by the CA

Field Name Description

Version Version number of X.509 specification

Serial number CA-issued unique identifier for a certificate

Signature Specifies the algorithm used by CA to sign this certificate

Issuer name Identity of CA issuing this certificate, in distinguished name (DN)[RFC 4514] format

Validity period Start and end of period of validity for certificate

Subject name Identity of entity whose public key is associated with this certificate, in DN format

Subject public key The subject’s public key as well indication of the public key algorithm (and algorithm
parameters) to be used with this key

Table 8.4 � Selected fields in an X.509 and RFC 1422 public key
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8.4 End-Point Authentication

End-point authentication is the process of one entity proving its identity to

another entity over a computer network, for example, a user proving its identity 

to an email server. As humans, we authenticate each other in many ways: We rec-

ognize each other’s faces when we meet, we recognize each other’s voices on the

telephone, we are authenticated by the customs official who checks us against the

picture on our passport.

In this section, we consider how one party can authenticate another 

party when the two are communicating over a network. We focus here on authen-

ticating a “live” party, at the point in time when communication is actually occur-

ring. A concrete example is a user authenticating him or herself to an e-mail

server. This is a subtly different problem from proving that a message received at

some point in the past did indeed come from that claimed sender, as studied in

Section 8.3.

When performing authentication over the network, the communicating par-

ties cannot rely on biometric information, such as a visual appearance or a voice-

print. Indeed, we will see in our later case studies that it is often network

elements such as routers and client/server processes that must authenticate each

other. Here, authentication must be done solely on the basis of messages and data

exchanged as part of an authentication protocol. Typically, an authentication

protocol would run before the two communicating parties run some other proto-

col (for example, a reliable data transfer protocol, a routing information

exchange protocol, or an e-mail protocol). The authentication protocol first

establishes the identities of the parties to each other’s satisfaction; only after

authentication do the parties get down to the work at hand.

As in the case of our development of a reliable data transfer (rdt) protocol in

Chapter 3, we will find it instructive here to develop various versions of an authen-

tication protocol, which we will call ap (authentication protocol), and poke holes in

each version as we proceed. (If you enjoy this stepwise evolution of a design, you

might also enjoy [Bryant 1988], which recounts a fictitious narrative between

designers of an open-network authentication system, and their discovery of the

many subtle issues involved.)

Let’s assume that Alice needs to authenticate herself to Bob.

8.4.1 Authentication Protocol ap1.0

Perhaps the simplest authentication protocol we can imagine is one where Alice

simply sends a message to Bob saying she is Alice. This protocol is shown in

Figure 8.15. The flaw here is obvious—there is no way for Bob actually to know
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Alice

I am Alice

Bob

Trudy
Trudy

Alice

I 
am
 A
li
ce

Bob

Figure 8.15 � Protocol ap1.0 and a failure scenario
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that the person sending the message “I am Alice” is indeed Alice. For example,

Trudy (the intruder) could just as well send such a message.

8.4.2 Authentication Protocol ap2.0

If Alice has a well-known network address (e.g., an IP address) from which she

always communicates, Bob could attempt to authenticate Alice by verifying that the

source address on the IP datagram carrying the authentication message matches

Alice’s well-known address. In this case, Alice would be authenticated. This might

stop a very network-naive intruder from impersonating Alice, but it wouldn’t stop

the determined student studying this book, or many others!

From our study of the network and data link layers, we know that it is not that

hard (for example, if one had access to the operating system code and could build

one’s own operating system kernel, as is the case with Linux and several other

freely available operating systems) to create an IP datagram, put whatever IP source

address we want (for example, Alice’s well-known IP address) into the IP datagram,

and send the datagram over the link-layer protocol to the first-hop router. From then

on, the incorrectly source-addressed datagram would be dutifully forwarded to Bob.

This approach, shown in Figure 8.16, is a form of IP spoofing. IP spoofing can be

avoided if Trudy’s first-hop router is configured to forward only datagrams contain-

ing Trudy’s IP source address [RFC 2827]. However, this capability is not univer-

sally deployed or enforced. Bob would thus be foolish to assume that Trudy’s

network manager (who might be Trudy herself) had configured Trudy’s first-hop

router to forward only appropriately addressed datagrams.



8.4.3 Authentication Protocol ap3.0

One classic approach to authentication is to use a secret password. The password is

a shared secret between the authenticator and the person being authenticated. Gmail,

Facebook, telnet, FTP, and many other services use password authentication. In pro-

tocol ap3.0, Alice thus sends her secret password to Bob, as shown in Figure 8.17.
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Figure 8.17 � Protocol ap3.0 and a failure scenario
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Figure 8.16 � Protocol ap2.0 and a failure scenario



Since passwords are so widely used, we might suspect that protocol ap3.0

is fairly secure. If so, we’d be wrong! The security flaw here is clear. If Trudy

eavesdrops on Alice’s communication, then she can learn Alice’s password. Lest

you think this is unlikely, consider the fact that when you Telnet to another

machine and log in, the login password is sent unencrypted to the Telnet server.

Someone connected to the Telnet client or server’s LAN can possibly sniff 

(read and store) all packets transmitted on the LAN and thus steal the login pass-

word. In fact, this is a well-known approach for stealing passwords (see, for

example, [Jimenez 1997]). Such a threat is obviously very real, so ap3.0 clearly

won’t do.

8.4.4 Authentication Protocol ap3.1

Our next idea for fixing ap3.0 is naturally to encrypt the password. By encrypting the

password, we can prevent Trudy from learning Alice’s password. If we assume that

Alice and Bob share a symmetric secret key, then Alice can encrypt 

the password and send her identification message, “I am Alice,” and her encrypted

password to Bob. Bob then decrypts the password and, assuming the password is 

correct, authenticates Alice. Bob feels comfortable in authenticating Alice since Alice

not only knows the password, but also knows the shared secret key value needed to

encrypt the password. Let’s call this protocol ap3.1.

While it is true that ap3.1 prevents Trudy from learning Alice’s password,

the use of cryptography here does not solve the authentication problem. Bob is

subject to a playback attack: Trudy need only eavesdrop on Alice’s communica-

tion, record the encrypted version of the password, and play back the encrypted

version of the password to Bob to pretend that she is Alice. The use of an

encrypted password in ap3.1 doesn’t make the situation manifestly different from

that of protocol ap3.0 in Figure 8.17.

8.4.5 Authentication Protocol ap4.0

The failure scenario in Figure 8.17 resulted from the fact that Bob could not dis-

tinguish between the original authentication of Alice and the later playback of

Alice’s original authentication. That is, Bob could not tell if Alice was live (that

is, was currently really on the other end of the connection) or whether the mes-

sages he was receiving were a recorded playback of a previous authentication of

Alice. The very (very) observant reader will recall that the three-way TCP hand-

shake protocol needed to address the same problem—the server side of a TCP

connection did not want to accept a connection if the received SYN segment was

an old copy (retransmission) of a SYN segment from an earlier connection. How

KA-B,
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did the TCP server side solve the problem of determining whether the client was

really live? It chose an initial sequence number that had not been used in a very

long time, sent that number to the client, and then waited for the client to respond

with an ACK segment containing that number. We can adopt the same idea here

for authentication purposes.

A nonce is a number that a protocol will use only once in a lifetime. That is,

once a protocol uses a nonce, it will never use that number again. Our ap4.0

protocol uses a nonce as follows:

1. Alice sends the message “I am Alice” to Bob.

2. Bob chooses a nonce, R, and sends it to Alice.

3. Alice encrypts the nonce using Alice and Bob’s symmetric secret key, 

and sends the encrypted nonce, (R), back to Bob. As in protocol ap3.1,

it is the fact that Alice knows and uses it to encrypt a value that lets 

Bob know that the message he receives was generated by Alice. The nonce 

is used to ensure that Alice is live.

4. Bob decrypts the received message. If the decrypted nonce equals the nonce he

sent Alice, then Alice is authenticated.

Protocol ap4.0 is illustrated in Figure 8.18. By using the once-in-a-lifetime

value, R, and then checking the returned value, (R), Bob can be sure 

that Alice is both who she says she is (since she knows the secret key value

needed to encrypt R) and live (since she has encrypted the nonce, R, that Bob just

created).

The use of a nonce and symmetric key cryptography forms the basis of ap4.0.

A natural question is whether we can use a nonce and public key cryptography

KA-B

KA-B

KA-B

KA-B,
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(rather than symmetric key cryptography) to solve the authentication problem. This

issue is explored in the problems at the end of the chapter.

8.5 Securing E-Mail

In previous sections, we examined fundamental issues in network security,

including symmetric key and public key cryptography, end-point authentication,

key distribution, message integrity, and digital signatures. We are now going to

examine how these tools are being used to provide security in the Internet.

Interestingly, it is possible to provide security services in any of the top four

layers of the Internet protocol stack. When security is provided for a specific appli-

cation-layer protocol, the application using the protocol will enjoy one or more

security services, such as confidentiality, authentication, or integrity. When security

is provided for a transport-layer protocol, all applications that use that protocol

enjoy the security services of the transport protocol. When security is provided at

the network layer on a host-to-host basis, all transport-layer segments (and hence all

application-layer data) enjoy the security services of the network layer. When secu-

rity is provided on a link basis, then the data in all frames traveling over the link

receive the security services of the link.

In Sections 8.5 through 8.8, we examine how security tools are being used in

the application, transport, network, and link layers. Being consistent with the gen-

eral structure of this book, we begin at the top of the protocol stack and discuss

security at the application layer. Our approach is to use a specific application, 

e-mail, as a case study for application-layer security. We then move down the proto-

col stack. We’ll examine the SSL protocol (which provides security at the transport

layer), IPsec (which provides security at the network layer), and the security of the

IEEE 802.11 wireless LAN protocol.

You might be wondering why security functionality is being provided at

more than one layer in the Internet. Wouldn’t it suffice simply to provide the

security functionality at the network layer and be done with it? There are two

answers to this question. First, although security at the network layer can offer

“blanket coverage” by encrypting all the data in the datagrams (that is, all the

transport-layer segments) and by authenticating all the source IP addresses, it

can’t provide user-level security. For example, a commerce site cannot rely on

IP-layer security to authenticate a customer who is purchasing goods at the com-

merce site. Thus, there is a need for security functionality at higher layers as well

as blanket coverage at lower layers. Second, it is generally easier to deploy new

Internet services, including security services, at the higher layers of the protocol

stack. While waiting for security to be broadly deployed at the network layer,

which is probably still many years in the future, many application developers
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“just do it” and introduce security functionality into their favorite applications. A

classic example is Pretty Good Privacy (PGP), which provides secure e-mail

(discussed later in this section). Requiring only client and server application

code, PGP was one of the first security technologies to be broadly used in the

Internet.

8.5.1 Secure E-Mail

We now use the cryptographic principles of Sections 8.2 through 8.3 to create a

secure e-mail system. We create this high-level design in an incremental manner, at

each step introducing new security services. When designing a secure e-mail sys-

tem, let us keep in mind the racy example introduced in Section 8.1—the love affair

between Alice and Bob. Imagine that Alice wants to send an e-mail message to Bob,

and Trudy wants to intrude.

Before plowing ahead and designing a secure e-mail system for Alice and

Bob, we should consider which security features would be most desirable for

them. First and foremost is confidentiality. As discussed in Section 8.1, neither

Alice nor Bob wants Trudy to read Alice’s e-mail message. The second feature

that Alice and Bob would most likely want to see in the secure e-mail system is

sender authentication. In particular, when Bob receives the message “I don’t

love you anymore. I never want to see you again. For-

merly yours, Alice,” he would naturally want to be sure that the message

came from Alice and not from Trudy. Another feature that the two lovers would

appreciate is message integrity, that is, assurance that the message Alice sends is

not modified while en route to Bob. Finally, the e-mail system should provide

receiver authentication; that is, Alice wants to make sure that she is indeed send-

ing the letter to Bob and not to someone else (for example, Trudy) who is imper-

sonating Bob.

So let’s begin by addressing the foremost concern, confidentiality. The most

straightforward way to provide confidentiality is for Alice to encrypt the message

with symmetric key technology (such as DES or AES) and for Bob to decrypt the

message on receipt. As discussed in Section 8.2, if the symmetric key is long

enough, and if only Alice and Bob have the key, then it is extremely difficult for

anyone else (including Trudy) to read the message. Although this approach is

straightforward, it has the fundamental difficulty that we discussed in Section

8.2—distributing a symmetric key so that only Alice and Bob have copies of it. So

we naturally consider an alternative approach—public key cryptography (using,

for example, RSA). In the public key approach, Bob makes his public key pub-

licly available (e.g., in a public key server or on his personal Web page), Alice

encrypts her message with Bob’s public key, and she sends the encrypted message

to Bob’s e-mail address. When Bob receives the message, he simply decrypts it

with his private key. Assuming that Alice knows for sure that the public key is
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Bob’s public key, this approach is an excellent means to provide the desired confi-

dentiality. One problem, however, is that public key encryption is relatively inef-

ficient, particularly for long messages.

To overcome the efficiency problem, let’s make use of a session key (dis-

cussed in Section 8.2.2). In particular, Alice (1) selects a random symmetric ses-

sion key, K
S
, (2) encrypts her message, m, with the symmetric key, (3) encrypts

the symmetric key with Bob’s public key, K
B

+, (4) concatenates the encrypted

message and the encrypted symmetric key to form a “package,” and (5) sends the

package to Bob’s e-mail address. The steps are illustrated in Figure 8.19. (In this

and the subsequent figures, the circled “+” represents concatenation and the cir-

cled “–” represents deconcatenation.) When Bob receives the package, he (1)

uses his private key, K
B
– , to obtain the symmetric key, K

S
, and (2) uses the sym-

metric key K
S

to decrypt the message m.

Having designed a secure e-mail system that provides confidentiality, let’s now

design another system that provides both sender authentication and message

integrity. We’ll suppose, for the moment, that Alice and Bob are no longer concerned

with confidentiality (they want to share their feelings with everyone!), and are

concerned only about sender authentication and message integrity. To accomplish

this task, we use digital signatures and message digests, as described in Section 8.3.

Specifically, Alice (1) applies a hash function, H (for example, MD5), to her

message, m, to obtain a message digest, (2) signs the result of the hash function 

with her private key, K
A
–, to create a digital signature, (3) concatenates the original

(unencrypted) message with the signature to create a package, and (4) sends the

package to Bob’s e-mail address. When Bob receives the package, he (1) applies

Alice’s public key, K
A
+, to the signed message digest and (2) compares the result of

this operation with his own hash, H, of the message. The steps are illustrated in
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Figure 8.20. As discussed in Section 8.3, if the two results are the same, Bob can be

pretty confident that the message came from Alice and is unaltered.

Now let’s consider designing an e-mail system that provides confidentiality,

sender authentication, and message integrity. This can be done by combining the

procedures in Figures 8.19 and 8.20. Alice first creates a preliminary package,

exactly as in Figure 8.20, that consists of her original message along with a digi-

tally signed hash of the message. She then treats this preliminary package as a

message in itself and sends this new message through the sender steps in Figure 8.19,

creating a new package that is sent to Bob. The steps applied by Alice are shown

in Figure 8.21. When Bob receives the package, he first applies his side of Figure 8.19

and then his side of Figure 8.20. It should be clear that this design achieves the

goal of providing confidentiality, sender authentication, and message integrity.

Note that, in this scheme, Alice uses public key cryptography twice: once 

with her own private key and once with Bob’s public key. Similarly, Bob also

uses public key cryptography twice—once with his private key and once with

Alice’s public key.

The secure e-mail design outlined in Figure 8.21 probably provides satisfac-

tory security for most e-mail users for most occasions. But there is still one

important issue that remains to be addressed. The design in Figure 8.21 requires

Alice to obtain Bob’s public key, and requires Bob to obtain Alice’s public key.

The distribution of these public keys is a nontrivial problem. For example, Trudy

might masquerade as Bob and give Alice her own public key while saying that it

is Bob’s public key, enabling her to receive the message meant for Bob. As we

learned in Section 8.3, a popular approach for securely distributing public keys is

to certify the public keys using a CA.
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Figure 8.20 � Using hash functions and digital signatures to provide
sender authentication and message integrity
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PHIL ZIMMERMANN AND PGP

Philip R. Zimmermann is the creator of Pretty Good Privacy (PGP). For that, he was

the target of a three-year criminal investigation because the government held that US

export restrictions for cryptographic software were violated when PGP spread all

around the world following its 1991 publication as freeware. After releasing PGP as

shareware, someone else put it on the Internet and foreign citizens downloaded it.

Cryptography programs in the United States are classified as munitions under federal

law and may not be exported.

Despite the lack of funding, the lack of any paid staff, and the lack of a company

to stand behind it, and despite government interventions, PGP nonetheless became

the most widely used e-mail encryption software in the world. Oddly enough, the US

government may have inadvertently contributed to PGP’s spread because of the

Zimmermann case.

The US government dropped the case in early 1996. The announcement was met

with celebration by Internet activists. The Zimmermann case had become the story of

an innocent person fighting for his rights against the abuses of big government. The

government’s giving in was welcome news, in part because of the campaign for

Internet censorship in Congress and the push by the FBI to allow increased govern-

ment snooping.

After the government dropped its case, Zimmermann founded PGP Inc., which

was acquired by Network Associates in December 1997. Zimmermann is now an

independent consultant in matters cryptographic.
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Figure 8.21 � Alice uses symmetric key cyptography, public key 
cryptography, a hash function, and a digital signature to
provide secrecy, sender authentication, and message integrity
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